首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48033篇
  免费   7216篇
  国内免费   2857篇
电工技术   3295篇
技术理论   1篇
综合类   3741篇
化学工业   12871篇
金属工艺   9010篇
机械仪表   3544篇
建筑科学   3268篇
矿业工程   1390篇
能源动力   1224篇
轻工业   1646篇
水利工程   645篇
石油天然气   1279篇
武器工业   706篇
无线电   2740篇
一般工业技术   7085篇
冶金工业   2694篇
原子能技术   217篇
自动化技术   2750篇
  2024年   206篇
  2023年   1167篇
  2022年   1639篇
  2021年   2315篇
  2020年   2192篇
  2019年   1833篇
  2018年   1844篇
  2017年   2225篇
  2016年   2326篇
  2015年   2322篇
  2014年   2840篇
  2013年   3096篇
  2012年   3608篇
  2011年   3635篇
  2010年   2682篇
  2009年   2761篇
  2008年   2417篇
  2007年   3038篇
  2006年   2911篇
  2005年   2171篇
  2004年   2002篇
  2003年   1585篇
  2002年   1322篇
  2001年   1134篇
  2000年   917篇
  1999年   659篇
  1998年   559篇
  1997年   476篇
  1996年   415篇
  1995年   355篇
  1994年   315篇
  1993年   229篇
  1992年   210篇
  1991年   143篇
  1990年   136篇
  1989年   166篇
  1988年   39篇
  1987年   46篇
  1986年   24篇
  1985年   28篇
  1984年   28篇
  1983年   23篇
  1982年   23篇
  1980年   12篇
  1979年   6篇
  1978年   4篇
  1974年   2篇
  1966年   3篇
  1965年   2篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
The soft nature of organic–inorganic halide perovskites renders their lattice particularly tunable to external stimuli such as pressure, undoubtedly offering an effective way to modify their structure for extraordinary optoelectronic properties. Here, using the methylammonium lead iodide as a representative exploratory platform, it is observed that the pressure-driven lattice disorder can be significantly suppressed via hydrogen isotope effect, which is crucial for better optical and mechanical properties previously unattainable. By a comprehensive in situ neutron/synchrotron-based analysis and optical characterizations, a remarkable photoluminescence (PL) enhancement by threefold is convinced in deuterated CD3ND3PbI3, which also shows much greater structural robustness with retainable PL after high peak-pressure compression–decompression cycle. With the first-principles calculations, an atomic level understanding of the strong correlation among the organic sublattice and lead iodide octahedral framework and structural photonics is proposed, where the less dynamic CD3ND3+ cations are vital to maintain the long-range crystalline order through steric and Coulombic interactions. These results also show that CD3ND3PbI3-based solar cell has comparable photovoltaic performance as CH3NH3PbI3-based device but exhibits considerably slower degradation behavior, thus representing a paradigm by suggesting isotope-functionalized perovskite materials for better materials-by-design and more stable photovoltaic application.  相似文献   
12.
Thermal energy storage (TES) materials constituted by a microencapsulated paraffin having a melting temperature of 6°C and a thermoplastic polyurethane (TPU) matrix were prepared through fused deposition modeling. Scanning electron microscope (SEM) micrographs demonstrated that the microcapsules were homogeneously distributed within the matrix, with a rather good adhesion within the layers of 3D printed specimens, even at elevated concentrations of microcapsules. The presence of paraffin capsules having a rigid polymer shell lead to a stiffness increase, associated to a decrease in the stress and in the strain at break. Tensile and compressive low-cycles fatigue tests showed that the presence of microcapsules negatively affected the fatigue resistance of the samples, and that the main part of the damage occurred in the first fatigue cycles. After the first 10 loading cycles at 50% of the stress at break, a decrease in the elastic modulus ranging from 60% for neat TPU to 80% for composite materials was detected. This decrease reached 40% of the original value at 90% of the stress at break after 10 cycles. Differential scanning calorimetry tests on specimens after fatigue loading highlighted a substantial retention of the original TES capability, in the range of 80%–90% of the pristine value, even after 1000 cycles, indicating that the integrity of the capsules was maintained and that the propagation of damage during fatigue tests took probably place within the surrounding polymer matrix. It could be therefore concluded that it is possible to apply the developed blends in applications where the materials are subjected to cyclic stresses, both in tensile and compressive mode.  相似文献   
13.
In this communication, the structural, micro-structural, dielectric, electrical, magnetic, and leakage-current characteristics of a double perovskite (Y2CoMnO6) ceramic material have been reported. The material was synthesized via a high-temperature mixed-oxide route. The compound crystallizes in a monoclinic structure which is confirmed from preliminary X-ray structural study. The morphological study by using scanning electron micrograph reveals the almost homogeneous distribution of grains throughout the surface of the sample. The nature of frequency-dependence of dielectric constant has been described by the Maxwell-Wagner model. The occurrence of a dielectric anomaly in the temperature dependence of dielectric permittivity study demonstrates the ferroelectric-paraelectric phase transition in the material. From the Nyquist plots, we found the existence of both grain and grain boundary effects. The frequency dependence of conductivity was studied by the Jonscher’s Power law, and the conduction phenomenon obeys the large overlapping polaron tunneling model. By using the Arrhenius equation, the activation energy has been calculated which is nearly equal to the energy required for the hoping of the electron. Both impedance and conductivity analysis demonstrate that the sample exhibits negative temperature coefficient of resistance (NTCR) properties indicating the semiconducting type of material at high temperatures. The anti-ferromagnetic character of the material is observed from the nature of magnetic hysteresis loop. The leakage current analysis suggests that the conduction process in the material follows the space charge limited conduction phenomenon. Such material will be helpful for modern electronic devices and spintronic applications.  相似文献   
14.
A sustainable power source is a key technical challenge for practical applications of electrically responsive soft robots, especially the required voltage is over several thousand volts. Here, a practicable new technology, triboelectric soft robot (TESR) system with the primary characteristics of power source from mechanical energy, is developed. At its heart is TESR with bioinspired architectures made of soft-deformable body and two triboelectric adhesion feet, which is driven and accurately controlled through triboelectric effect, while reaching maximum crawling speeds of 14.9 mm s−1 on the acrylic surface. The characteristics of the TESR, including displacement and force, are tested and simulated under the power of a rotary freestanding triboelectric nanogenerator (RF-TENG). Crawling of TESR is successfully realized on different materials surfaces and different angle slopes under the driven of RF-TENG. Furthermore, a real-time visual monitoring platform, in which TESR carries a micro camera to transmit images in a long narrow tunnel, is also achieved successfully, indicating that it can be used for fast diagnosis in an area inaccessible to human beings in the future. This study offers a new insight into the sustainable power source technologies suitable for electrically responsive soft robots and contributes to expanding the applicability of TENGs.  相似文献   
15.
The production of ceramic matrix composites (CMC) based on C/C-SiC is still very cost-intensive and therefore only economical for a few applications. The fabrication of the preforms involves many costs that need to be reduced. In this work, the shaping of the CFRP-preforms is realized by thermoset injection molding, which enables large-scale production. The polymeric matrix used is a multi-component matrix consisting of novolak resin, curing agent and lubricant. Six millimeter chopped carbon fiber with a proportion of 50 wt.% were used as a reinforcement. These ingredients are processed by an industrial equipment for compounding and injection molding in order to manufacture a CFRP demonstrator representing a brake disc. Test specimens are cut out of the demonstrator in different directions in order to investigate influences of flow direction and weld lines on microstructural and mechanical properties. Afterward, the CFRP samples were converted to C/C-SiC composites by the liquid silicon infiltration process. The article addresses the flow behavior of the compound during the injection molding and the building of the weld lines in the demonstrator. In addition, results of the directional dependence of the microstructural and mechanical properties within the fabricated disc in the different production steps are presented.  相似文献   
16.
In this work, we developed a novel system of isovalent Zr4+ and donor Nb5+ co-doped CaCu3Ti4O12 (CCTO) ceramics to enhance dielectric response. The influences of Zr4+ and Nb5+ co-substituting on the colossal dielectric response and relaxation behavior of the CCTO ceramics fabricated by a conventional solid-phase synthesis method were investigated methodically. Co-doping of Zr4+ and Nb5+ ions leads to a significant reduction in grain size for the CCTO ceramics sintered at 1060 °C for 10 h. XRD and Raman results of the CaCu3Ti3.8-xZrxNb0.2O12 (CCTZNO) ceramics show a cubic perovskite structure with space group Im-3. The first principle calculation result exhibits a better thermodynamic stability of the CCTO structure co-doped with Zr4+ and Nb5+ ions than that of single-doped with Zr4+ or Nb5+ ion. Interestingly, the CCTZNO ceramics exhibit greatly improved dielectric constant (~105) at a frequency range of 102–105 Hz and at a temperature range of 20–210 °C, indicating a giant dielectric response within broader frequency and temperature ranges. The dielectric properties of CCTZNO ceramics were analyzed from the viewpoints of defect-dipole effect and internal barrier layer capacitance (IBLC) model. Accordingly, the immensely enhanced dielectric response is primarily ascribed to the complex defect dipoles associated with oxygen vacancies by co-doping Zr4+ and Nb5+ ions into CCTO structure. In addition, the obvious dielectric relaxation behavior has been found in CCTZNO ceramics, and the relaxation process in middle frequency regions is attributed to the grain boundary response confirmed by complex impedance spectroscopy and electric modulus.  相似文献   
17.
《Ceramics International》2022,48(7):9765-9780
The polycrystalline ceramic specimens of three different alumino-silicate solid solutions (Al0.70Si0.30O, Al0.73Si0.27O and Al0.75Si0.25O) consisting of different alumina and silica concentrations have been synthesized by thermal plasma sintering technique. From structural analysis carried out by X-ray diffraction, the ceramics are mostly found to consist of two different phases of mullite and sillimanite. SEM images of these ceramics reveal a high dense and less porous microstructure with homogeneous distribution of grains throughout their surface. These materials exhibit high dielectric constant value (>103) with low dissipation factor. The AC conductivity analysis reveals that Al0.70Si0.30O and Al0.75Si0.25O ceramics possess room temperature conductivity values of the order of 10?5, whereas Al0.73Si0.27O has conductivity of 10?7 order that increases with rise in temperature. From the Nyquist plots, the grain and grain boundary conductivities are distinguished and negative temperature coefficient of resistance behavior is identified in these ceramics with small positive temperature coefficient of resistance effect.  相似文献   
18.
This study deals with the utility of mini spray dryer process to improve the dispersibility, of graphene oxide(GO) and its application for high-performance supercapacitor. Initially, the neutral solution of GO was obtained using the modified Hummer's method. After this, the prepared GO solution was processed by mini spray dryer to obtain a more purified, lighter, and dispersed form of GO which is named as spray dryer processed GO (SPGO). The SPGO thus obtained showed excellent dispersibility behavior with various solvents, which is not found in case of conventional oven drying. Furthermore, utility of SPGO and its reduced form (r-SPGO) for supercapacitor applications have been investigated. Results obtained from the cyclic voltammetry(CV) analysis, impedance, and charge-discharge behavior of supercapacitor fabricated using r-SPGO shows enhanced features. Therefore, the simple spray dried GO and its reduced form, that is, r-SPGO can be utilized as a potential candidate for the supercapacitor application. Herein, as synthesized SPGO exhibited the specific capacitance of 12.07 and 37.6 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively, at a scan rate of 5 mV/s. On the other hand, reduced form of SPGO, that is, r-SPGO showed the specific capacitance of 27.16 and 230 F/g with PVA-H3PO4 and 1 mol/L H3PO4, respectively.  相似文献   
19.
研究了不同等温退火工艺对8030铝合金导线组织及性能的影响。结果表明:等温退火前后合金均由α-Al基体和Al6Fe相组成。在同一等温温度下,随着等温时间的延长组织逐渐趋于均匀化;同一等温时间下,随着等温温度的升高,组织趋于均匀化的时间缩短。经过等温退火处理后铝合金导线的导电率均有所提高,在470 ℃均匀化退火24 h后再经240 ℃等温4 h,合金导电率达到最高值57.21%IACS,比未经热处理试样的导电率提高了2.4%IACS。经过等温退火处理后铝合金导线的硬度及抗拉强度均有所降低,塑性大幅度提高。在470 ℃均匀化退火24 h后再经260 ℃等温8 h,合金的伸长率最高可达23.64%。热处理前后合金均为塑性断裂。  相似文献   
20.
通过硬度测试、拉伸性能测试、透射电镜观察等分析手段研究了不同强变形工艺下2519A铝合金的力学性能与微观组织。结果表明,经50%的冷轧变形和165 ℃人工时效后,2519A合金的力学性能明显提高,其抗拉强度、屈服强度和伸长率分别为522 MPa、468 MPa和8.5%。而在冷变形前添加165 ℃×2 h预时效处理,合金的力学性能进一步提高,其抗拉强度、屈服强度和伸长率分别达到535 MPa、497 MPa和8%。预时效处理可以提高合金中θ′相的密度,使析出相分布更加均匀,有助于提高合金的力学性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号